
Collaborative Artware
MAAD 23655 (Autumn 2022)

The term ‘software art’ acquired a status of an umbrella term for a set of practices
approaching software as a cultural construct. Questioning software culturally means not
taking for granted, but focusing on, recognising and problematising its distinct aesthetics,
poetics and politics captured and performed in its production, dissemination, usage and
presence, contexts which software defines and is defined by, histories and cultures built
around it, roles it plays and its economies, and various other dimensions. Software,
deprived of its alleged ‘transparency’, turns out to be a powerful mechanism, a
multifaceted mediator structuring human experience, perception, communication, work
and leisure, a layer occupying central positions in the production of digital cultures,
politics and economies. — Olga Goriunova (2007)

Course Description

In this course we'll be working together as an open source arts collective. We'll produce an
online app which explores the expressive space between software as a tool and software as art.
We'll learn the processes and tools that professional creative technologists use when working
together to produce "software art" projects. This is an intermediate level coding course with work
being predominantly written in JavaScript (server side and client side). While proficiency in
JavaScript is not required, it's recommended that students have a background in basic
programming concepts (data types, variables, functions, conditions, loops, etc) as this course
will build on those to introduce more intermediate level concepts and programming paradigms.

where: Crerar Library 134 ;

when: Tues, 02:00 pm - 04:50 pm ;

professor: Nick Briz ;

email: nbriz@uchicago.edu ;

office hours: by-appointment-only ;

class website: https://github.com/net-art-uchicago/paintArtware2.0 ;

https://archive.bleu255.com/dah/_q_softwareart.html
https://nickbriz.com/
https://github.com/net-art-uchicago/paintArtware2.0

Learning Goals

● Develop a working knowledge of core web technologies and coding languages with a
focus on building web applications (as opposed to web sites) with standard web APIs (as
opposed to application frameworks like React, Angular or Vue)

● Foundational understanding of what it means to work collaboratively on online projects
including a working knowledge of open-source collaboration tools (specifically Git and
GitHub) and methodologies (Agile, Scrum, etc)

Class Materials

In order to participate in this course you will need to have a decent computer (desktop or laptop
with 8-16GB of ram or more) and a modern Web browser like Firefox, Brave, Chrome, Vivaldi
or others (do not use Internet Explorer or Safari as your primary browser, those are subpar
browsers).

I highly recommend that you download more than one, because some of our code may render
slightly differently on different browsers. You never know which browser your audience will be
using to view/experience your work online and so it's important to test your work across the
most common/popular browsers, these days that includes: Chrome, Firefox and Opera as well
as Edge (the default browser on Windows) and Safari (the default browser on MacOS).

You will need a code editor, I will be using Atom but you could also use Sublime or VSCode
(these are all very similar). If you have a preferred code editor that is not one of these, run it by
me first for approval.

We'll be using standard open-source development tools in order to work collaboratively on
our class project. For this you will need to download and install the git command line tool as well
as create a free account on GitHub (if you're new to GitHub you should also checkout their
Student Developer Pack).

https://www.mozilla.org/en-US/firefox/new/
https://brave.com/
https://www.google.com/chrome/
https://vivaldi.com/
https://www.google.com/chrome/
https://www.mozilla.org/en-US/firefox/new/
https://www.opera.com/
https://atom.io/
https://www.sublimetext.com/
https://code.visualstudio.com/
https://git-scm.com/
https://github.com/
https://education.github.com/pack
https://education.github.com/pack

Class Structure

Our primary goal in this course is to create an experimental web based drawing application
together as a class. The structure of this course is loosely modeled on the same process a
group of creative technologists would follow while working on professional/commercial projects.
This means that the specific tasks (assignments) will be collectively discussed but individually
self-assigned.

The first weeks this quarter will be predominantly focused on introducing the core concepts and
tools required to complete these tasks. This means ensuring everyone has the necessary
technical background (familiarity with JavaScript, code editors, browser developer tools and
git/GitHub) as well as an understanding of the collaborative open-source development process.
The rest of the quarter will be spent working on our assigned tasks. Each student will be
working at their own pace and so the number of tasks may vary depending on the student's
technical level as well as the difficulty of each particular task.

Evaluation

Loosely following the processes of development methodologies like Agile and Scrum, students
will self-assign tasks after ideas and the general direction have been discussed and agreed
upon as a group. Students will be expected to move their tasks through the various columns of
our project's "kanban" board as they progress through their self-assigned tasks. Each task is
worth a different number of points depending on the type of task it is (see assignment section
below). Your grade will be directly related to the number of points you acquire (max of 100). I will
use this formula: grade = points * 4 / 100 to determine your grade.

A task (ie. an individualized class assignment) is considered submitted when the student opens
a "pull request" (PR) and is not considered complete until it gets "merged" into the class
"repository" (repo). Evaluations will be conducted in the form of a "code review" on GitHub.
Contributions to the class repo will only be merged if/when the assigned task has met the
following criteria:

● the code must accomplish the intended goal (as defined the corresponding GitHub
project's task)

● the code must be as error free as possible (this means any console errors should be
addressed before being merged)

● the code must conform to the standard JS coding style as well as other conventions
established in class (indentation, naming conventions, line lengths, etc)

● any new files created in accomplishing the task must be contained in the proper
directory.

https://registrar.uchicago.edu/records/grading/grading-system/
https://standardjs.com/

Assignments
(aka “tasks”)

The vast majority of the tasks will be “module” contributions, these will be either additional tools,
filters, options or functions (the details for each will be explained in class). These tasks will be
initially discussed/proposed in a class discussion and, after receiving some feedback on the
idea, will be created by the individual artist working on that task. A “meta task” is an idea that
goes beyond the constraints of a module, this could mean making modifications to the
framework itself like design changes, architectural changes or otherwise extending the
functionality beyond what it’s capable of. These tasks will be created by the individual artist but
must be pre-approved by the professor before it can be self-assigned.

The remaining two categories are not created by the artist, but rather by the professor. A “bonus
task” is something small which might come up in a class conversation (updating a logo,
reorganizing files, etc), the points for which will vary depending on the time/difficulty of the task
and will be determined upon the creation of the task. The same is true for “bug fix” tasks, which
have a minimum of 10 points (but may be more). Any artist in the group can assign any of these
tasks to themselves, so long as they haven’t already been taken by another artist.

● tool module: 20

● filter module: 20

● options module: 30

● function module: 40

● bonus task: ??

● bug fix: 10+

● meta task: 50-100

